3.2.20 \(\int (a+a \cos (c+d x))^{5/2} \sec ^5(c+d x) \, dx\) [120]

3.2.20.1 Optimal result
3.2.20.2 Mathematica [C] (verified)
3.2.20.3 Rubi [A] (verified)
3.2.20.4 Maple [B] (verified)
3.2.20.5 Fricas [A] (verification not implemented)
3.2.20.6 Sympy [F(-1)]
3.2.20.7 Maxima [F(-1)]
3.2.20.8 Giac [A] (verification not implemented)
3.2.20.9 Mupad [F(-1)]

3.2.20.1 Optimal result

Integrand size = 23, antiderivative size = 182 \[ \int (a+a \cos (c+d x))^{5/2} \sec ^5(c+d x) \, dx=\frac {163 a^{5/2} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{64 d}+\frac {163 a^3 \tan (c+d x)}{64 d \sqrt {a+a \cos (c+d x)}}+\frac {163 a^3 \sec (c+d x) \tan (c+d x)}{96 d \sqrt {a+a \cos (c+d x)}}+\frac {17 a^3 \sec ^2(c+d x) \tan (c+d x)}{24 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \sqrt {a+a \cos (c+d x)} \sec ^3(c+d x) \tan (c+d x)}{4 d} \]

output
163/64*a^(5/2)*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d+163/64 
*a^3*tan(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+163/96*a^3*sec(d*x+c)*tan(d*x+c)/ 
d/(a+a*cos(d*x+c))^(1/2)+17/24*a^3*sec(d*x+c)^2*tan(d*x+c)/d/(a+a*cos(d*x+ 
c))^(1/2)+1/4*a^2*sec(d*x+c)^3*(a+a*cos(d*x+c))^(1/2)*tan(d*x+c)/d
 
3.2.20.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 6.69 (sec) , antiderivative size = 388, normalized size of antiderivative = 2.13 \[ \int (a+a \cos (c+d x))^{5/2} \sec ^5(c+d x) \, dx=-\frac {a^2 \sqrt {a (1+\cos (c+d x))} \sec ^9\left (\frac {1}{2} (c+d x)\right ) \left (1467 \sqrt {2} \log \left (i-\sqrt {2} e^{\frac {1}{2} i (c+d x)}-i e^{i (c+d x)}\right )+1956 \sqrt {2} \cos (2 (c+d x)) \left (\log \left (i-\sqrt {2} e^{\frac {1}{2} i (c+d x)}-i e^{i (c+d x)}\right )-\log \left (i+\sqrt {2} e^{\frac {1}{2} i (c+d x)}-i e^{i (c+d x)}\right )\right )+489 \sqrt {2} \cos (4 (c+d x)) \left (\log \left (i-\sqrt {2} e^{\frac {1}{2} i (c+d x)}-i e^{i (c+d x)}\right )-\log \left (i+\sqrt {2} e^{\frac {1}{2} i (c+d x)}-i e^{i (c+d x)}\right )\right )-1467 \sqrt {2} \log \left (i+\sqrt {2} e^{\frac {1}{2} i (c+d x)}-i e^{i (c+d x)}\right )+2060 \sin \left (\frac {1}{2} (c+d x)\right )-6204 \sin \left (\frac {3}{2} (c+d x)\right )-652 \sin \left (\frac {5}{2} (c+d x)\right )-1956 \sin \left (\frac {7}{2} (c+d x)\right )\right )}{6144 d \left (-1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right )^4} \]

input
Integrate[(a + a*Cos[c + d*x])^(5/2)*Sec[c + d*x]^5,x]
 
output
-1/6144*(a^2*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]^9*(1467*Sqrt[2]*L 
og[I - Sqrt[2]*E^((I/2)*(c + d*x)) - I*E^(I*(c + d*x))] + 1956*Sqrt[2]*Cos 
[2*(c + d*x)]*(Log[I - Sqrt[2]*E^((I/2)*(c + d*x)) - I*E^(I*(c + d*x))] - 
Log[I + Sqrt[2]*E^((I/2)*(c + d*x)) - I*E^(I*(c + d*x))]) + 489*Sqrt[2]*Co 
s[4*(c + d*x)]*(Log[I - Sqrt[2]*E^((I/2)*(c + d*x)) - I*E^(I*(c + d*x))] - 
 Log[I + Sqrt[2]*E^((I/2)*(c + d*x)) - I*E^(I*(c + d*x))]) - 1467*Sqrt[2]* 
Log[I + Sqrt[2]*E^((I/2)*(c + d*x)) - I*E^(I*(c + d*x))] + 2060*Sin[(c + d 
*x)/2] - 6204*Sin[(3*(c + d*x))/2] - 652*Sin[(5*(c + d*x))/2] - 1956*Sin[( 
7*(c + d*x))/2]))/(d*(-1 + Tan[(c + d*x)/2]^2)^4)
 
3.2.20.3 Rubi [A] (verified)

Time = 0.93 (sec) , antiderivative size = 189, normalized size of antiderivative = 1.04, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.522, Rules used = {3042, 3241, 27, 3042, 3459, 3042, 3251, 3042, 3251, 3042, 3252, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^5(c+d x) (a \cos (c+d x)+a)^{5/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}}{\sin \left (c+d x+\frac {\pi }{2}\right )^5}dx\)

\(\Big \downarrow \) 3241

\(\displaystyle \frac {a^2 \tan (c+d x) \sec ^3(c+d x) \sqrt {a \cos (c+d x)+a}}{4 d}-\frac {1}{4} a \int -\frac {1}{2} \sqrt {\cos (c+d x) a+a} (13 \cos (c+d x) a+17 a) \sec ^4(c+d x)dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{8} a \int \sqrt {\cos (c+d x) a+a} (13 \cos (c+d x) a+17 a) \sec ^4(c+d x)dx+\frac {a^2 \tan (c+d x) \sec ^3(c+d x) \sqrt {a \cos (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{8} a \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (13 \sin \left (c+d x+\frac {\pi }{2}\right ) a+17 a\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^4}dx+\frac {a^2 \tan (c+d x) \sec ^3(c+d x) \sqrt {a \cos (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 3459

\(\displaystyle \frac {1}{8} a \left (\frac {163}{6} a \int \sqrt {\cos (c+d x) a+a} \sec ^3(c+d x)dx+\frac {17 a^2 \tan (c+d x) \sec ^2(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^2 \tan (c+d x) \sec ^3(c+d x) \sqrt {a \cos (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{8} a \left (\frac {163}{6} a \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )^3}dx+\frac {17 a^2 \tan (c+d x) \sec ^2(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^2 \tan (c+d x) \sec ^3(c+d x) \sqrt {a \cos (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 3251

\(\displaystyle \frac {1}{8} a \left (\frac {163}{6} a \left (\frac {3}{4} \int \sqrt {\cos (c+d x) a+a} \sec ^2(c+d x)dx+\frac {a \tan (c+d x) \sec (c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {17 a^2 \tan (c+d x) \sec ^2(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^2 \tan (c+d x) \sec ^3(c+d x) \sqrt {a \cos (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{8} a \left (\frac {163}{6} a \left (\frac {3}{4} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )^2}dx+\frac {a \tan (c+d x) \sec (c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {17 a^2 \tan (c+d x) \sec ^2(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^2 \tan (c+d x) \sec ^3(c+d x) \sqrt {a \cos (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 3251

\(\displaystyle \frac {1}{8} a \left (\frac {163}{6} a \left (\frac {3}{4} \left (\frac {1}{2} \int \sqrt {\cos (c+d x) a+a} \sec (c+d x)dx+\frac {a \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a \tan (c+d x) \sec (c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {17 a^2 \tan (c+d x) \sec ^2(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^2 \tan (c+d x) \sec ^3(c+d x) \sqrt {a \cos (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{8} a \left (\frac {163}{6} a \left (\frac {3}{4} \left (\frac {1}{2} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {a \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a \tan (c+d x) \sec (c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {17 a^2 \tan (c+d x) \sec ^2(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^2 \tan (c+d x) \sec ^3(c+d x) \sqrt {a \cos (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 3252

\(\displaystyle \frac {1}{8} a \left (\frac {163}{6} a \left (\frac {3}{4} \left (\frac {a \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {a \int \frac {1}{a-\frac {a^2 \sin ^2(c+d x)}{\cos (c+d x) a+a}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}\right )+\frac {a \tan (c+d x) \sec (c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {17 a^2 \tan (c+d x) \sec ^2(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^2 \tan (c+d x) \sec ^3(c+d x) \sqrt {a \cos (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{8} a \left (\frac {17 a^2 \tan (c+d x) \sec ^2(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}+\frac {163}{6} a \left (\frac {3}{4} \left (\frac {\sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {a \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a \tan (c+d x) \sec (c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )\right )+\frac {a^2 \tan (c+d x) \sec ^3(c+d x) \sqrt {a \cos (c+d x)+a}}{4 d}\)

input
Int[(a + a*Cos[c + d*x])^(5/2)*Sec[c + d*x]^5,x]
 
output
(a^2*Sqrt[a + a*Cos[c + d*x]]*Sec[c + d*x]^3*Tan[c + d*x])/(4*d) + (a*((17 
*a^2*Sec[c + d*x]^2*Tan[c + d*x])/(3*d*Sqrt[a + a*Cos[c + d*x]]) + (163*a* 
((a*Sec[c + d*x]*Tan[c + d*x])/(2*d*Sqrt[a + a*Cos[c + d*x]]) + (3*((Sqrt[ 
a]*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (a*Tan[c 
+ d*x])/(d*Sqrt[a + a*Cos[c + d*x]])))/4))/6))/8
 

3.2.20.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3241
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(b*c - a*d)*Cos[e + f*x]*(a + b 
*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a* 
d))), x] + Simp[b^2/(d*(n + 1)*(b*c + a*d))   Int[(a + b*Sin[e + f*x])^(m - 
 2)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*c*(m - 2) - b*d*(m - 2*n - 4) - (b* 
c*(m - 1) - a*d*(m + 2*n + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
 && GtQ[m, 1] && LtQ[n, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m + 1/2] || 
 (IntegerQ[m] && EqQ[c, 0]))
 

rule 3251
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)*Cos[e + f*x]*((c + d*Sin[e 
+ f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x] + Sim 
p[(2*n + 3)*((b*c - a*d)/(2*b*(n + 1)*(c^2 - d^2)))   Int[Sqrt[a + b*Sin[e 
+ f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]
 

rule 3252
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)]), x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b*c + a*d - d*x^2), 
x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3459
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1) 
*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b* 
c - 2*a*d*(n + 1)))/(2*d*(n + 1)*(b*c + a*d))   Int[Sqrt[a + b*Sin[e + f*x] 
]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1]
 
3.2.20.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(881\) vs. \(2(158)=316\).

Time = 299.26 (sec) , antiderivative size = 882, normalized size of antiderivative = 4.85

method result size
default \(\text {Expression too large to display}\) \(882\)

input
int((a+cos(d*x+c)*a)^(5/2)*sec(d*x+c)^5,x,method=_RETURNVERBOSE)
 
output
1/24*a^(3/2)*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(7824*a*(ln 
(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a 
*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))+ln(-4/(2*cos(1/2*d*x+1/2*c)-2^( 
1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2) 
*a^(1/2)-2*a)))*sin(1/2*d*x+1/2*c)^8-7824*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2 
)^(1/2)*a^(1/2)+2*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d 
*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*a+2*ln(-4/( 
2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin 
(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a)*sin(1/2*d*x+1/2*c)^6+1304*(11*2^ 
(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+9*ln(4/(2*cos(1/2*d*x+1/2*c)+ 
2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1 
/2)*a^(1/2)+2*a))*a+9*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos( 
1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a)*sin 
(1/2*d*x+1/2*c)^4+(-9212*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-39 
12*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/ 
2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*a-3912*ln(-4/(2*cos(1/2*d* 
x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2 
*c)^2)^(1/2)*a^(1/2)-2*a))*a)*sin(1/2*d*x+1/2*c)^2+2094*2^(1/2)*(a*sin(1/2 
*d*x+1/2*c)^2)^(1/2)*a^(1/2)+489*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1 
/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)...
 
3.2.20.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 196, normalized size of antiderivative = 1.08 \[ \int (a+a \cos (c+d x))^{5/2} \sec ^5(c+d x) \, dx=\frac {489 \, {\left (a^{2} \cos \left (d x + c\right )^{5} + a^{2} \cos \left (d x + c\right )^{4}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, {\left (489 \, a^{2} \cos \left (d x + c\right )^{3} + 326 \, a^{2} \cos \left (d x + c\right )^{2} + 184 \, a^{2} \cos \left (d x + c\right ) + 48 \, a^{2}\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{768 \, {\left (d \cos \left (d x + c\right )^{5} + d \cos \left (d x + c\right )^{4}\right )}} \]

input
integrate((a+a*cos(d*x+c))^(5/2)*sec(d*x+c)^5,x, algorithm="fricas")
 
output
1/768*(489*(a^2*cos(d*x + c)^5 + a^2*cos(d*x + c)^4)*sqrt(a)*log((a*cos(d* 
x + c)^3 - 7*a*cos(d*x + c)^2 - 4*sqrt(a*cos(d*x + c) + a)*sqrt(a)*(cos(d* 
x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*(48 
9*a^2*cos(d*x + c)^3 + 326*a^2*cos(d*x + c)^2 + 184*a^2*cos(d*x + c) + 48* 
a^2)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c))/(d*cos(d*x + c)^5 + d*cos(d*x 
+ c)^4)
 
3.2.20.6 Sympy [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{5/2} \sec ^5(c+d x) \, dx=\text {Timed out} \]

input
integrate((a+a*cos(d*x+c))**(5/2)*sec(d*x+c)**5,x)
 
output
Timed out
 
3.2.20.7 Maxima [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{5/2} \sec ^5(c+d x) \, dx=\text {Timed out} \]

input
integrate((a+a*cos(d*x+c))^(5/2)*sec(d*x+c)^5,x, algorithm="maxima")
 
output
Timed out
 
3.2.20.8 Giac [A] (verification not implemented)

Time = 0.42 (sec) , antiderivative size = 192, normalized size of antiderivative = 1.05 \[ \int (a+a \cos (c+d x))^{5/2} \sec ^5(c+d x) \, dx=-\frac {\sqrt {2} {\left (489 \, \sqrt {2} a^{2} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right ) \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + \frac {4 \, {\left (3912 \, a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 7172 \, a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 4606 \, a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 1047 \, a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{4}}\right )} \sqrt {a}}{768 \, d} \]

input
integrate((a+a*cos(d*x+c))^(5/2)*sec(d*x+c)^5,x, algorithm="giac")
 
output
-1/768*sqrt(2)*(489*sqrt(2)*a^2*log(abs(-2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c 
))/abs(2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c)))*sgn(cos(1/2*d*x + 1/2*c)) + 4* 
(3912*a^2*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^7 - 7172*a^2*sgn( 
cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^5 + 4606*a^2*sgn(cos(1/2*d*x + 
1/2*c))*sin(1/2*d*x + 1/2*c)^3 - 1047*a^2*sgn(cos(1/2*d*x + 1/2*c))*sin(1/ 
2*d*x + 1/2*c))/(2*sin(1/2*d*x + 1/2*c)^2 - 1)^4)*sqrt(a)/d
 
3.2.20.9 Mupad [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{5/2} \sec ^5(c+d x) \, dx=\int \frac {{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2}}{{\cos \left (c+d\,x\right )}^5} \,d x \]

input
int((a + a*cos(c + d*x))^(5/2)/cos(c + d*x)^5,x)
 
output
int((a + a*cos(c + d*x))^(5/2)/cos(c + d*x)^5, x)